Detection of Gait Modes Using an Artificial Neural Network during Walking with a Powered Ankle-Foot Orthosis
نویسندگان
چکیده
This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition.
منابع مشابه
The Effect of Modified Floor Reaction Ankle Foot Orthoses on Walking Abilities in Children with Cerebral Palsy
Objectives: This study was designed to evaluate the effectiveness of a modified floor reaction ankle foot orthosis (FRAFO) design on gait performance in children with cerebral palsy. Methods: Eight children with cerebral palsy wore a modified FRAFO bilaterally for six weeks. Motion analysis was used to assess the immediate effectiveness of the orthosis on improving gait and also following si...
متن کاملThe influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.
BACKGROUND Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. OBJECTIVE The purpose of this study was to determine differences of the powered ...
متن کاملThe physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.
BACKGROUND A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. OBJECTIVE The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-an...
متن کاملDesign and Evaluation of an Articulated Ankle Foot Orthosis with Plantarflexion Resistance on the Gait: a Case Series of 2 Patients with Hemiplegia
Ankle-foot orthoses (AFOs) have been described to have positive effects on the gait biomechanics in stroke patients. The plantarflexion resistance of an AFO is considered important for hemiplegic patients, but the evidence is still limited. The purpose of this case series was to design and evaluate the immediate effect of an articulated AFO on kinematics and kinetics of lower-limb joints in str...
متن کاملAn improved powered ankle-foot orthosis using proportional myoelectric control.
We constructed a powered ankle-foot orthosis for human walking with a novel myoelectric controller. The orthosis included a carbon fiber and polypropylene shell, a metal hinge joint, and two artificial pneumatic muscles. Soleus electromyography (EMG) activated the artificial plantar flexor and inhibited the artificial dorsiflexor. Tibialis anterior EMG activated the artificial dorsiflexor. We c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016